Genome-wide screen identifies host genes affecting viral RNA recombination.
نویسندگان
چکیده
Rapid evolution of RNA viruses with mRNA-sense genomes is a major concern to health and economic welfare because of the devastating diseases these viruses inflict on humans, animals, and plants. To test whether host genes can affect the evolution of RNA viruses, we used a Saccharomyces cerevisiae single-gene deletion library, which includes approximately 80% of yeast genes, in RNA recombination studies based on a small viral replicon RNA derived from tomato bushy stunt virus. The genome-wide screen led to the identification of five host genes whose absence resulted in the rapid generation of new viral RNA recombinants. Thus, these genes normally suppress viral RNA recombination, but in their absence, hosts become viral recombination "hotbeds." Four of the five suppressor genes are likely involved in RNA degradation, suggesting that RNA degradation could play a role in viral RNA recombination. In contrast, deletion of four other host genes inhibited virus recombination, indicating that these genes normally accelerate the RNA recombination process. A comparison of deletion strains with the lowest and the highest recombination rate revealed that host genes could affect recombinant accumulation by up to 80-fold. Overall, our results demonstrate that a set of host genes have a major effect on RNA virus recombination and evolution.
منابع مشابه
Suppression of viral RNA recombination by a host exoribonuclease.
RNA viruses of humans, animals, and plants evolve rapidly due to mutations and RNA recombination. A previous genome-wide screen in Saccharomyces cerevisiae, a model host, identified five host genes, including XRN1, encoding a 5'-3' exoribonuclease, whose absence led to an approximately 10- to 50-fold enhancement of RNA recombination in Tomato bushy stunt virus (E. Serviene, N. Shapka, C. P. Che...
متن کاملGenome-Wide Analysis of Host Factors in Nodavirus RNA Replication
Flock House virus (FHV), the best studied of the animal nodaviruses, has been used as a model for positive-strand RNA virus research. As one approach to identify host genes that affect FHV RNA replication, we performed a genome-wide analysis using a yeast single gene deletion library and a modified, reporter gene-expressing FHV derivative. A total of 4,491 yeast deletion mutants were tested for...
متن کاملHost Cell Factors Necessary for Influenza A Infection: Meta-Analysis of Genome Wide Studies
The Influenza A virus belongs to the Orthomyxoviridae family. Influenza virus infection occurs yearly in all countries of the world. It usually kills between 250,000 and 500,000 people and causes severe illness in millions more. Over the last century alone we have seen 3 global influenza pandemics. The great human and financial cost of this disease has made it the second most studied virus toda...
متن کاملConstraints to Genetic Exchange Support Gene Coadaptation in a Tripartite RNA Virus
Genetic exchange by recombination, or reassortment of genomic segments, has been shown to be an important process in RNA virus evolution, resulting often in important phenotypic changes affecting host range and virulence. However, data from numerous systems indicate that reassortant or recombinant genotypes could be selected against in virus populations and suggest that there is coadaptation am...
متن کاملRNAi screening reveals requirement for host cell secretory pathway in infection by diverse families of negative-strand RNA viruses.
Negative-strand (NS) RNA viruses comprise many pathogens that cause serious diseases in humans and animals. Despite their clinical importance, little is known about the host factors required for their infection. Using vesicular stomatitis virus (VSV), a prototypic NS RNA virus in the family Rhabdoviridae, we conducted a human genome-wide siRNA screen and identified 72 host genes required for vi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 30 شماره
صفحات -
تاریخ انتشار 2005